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Neurons of the locus coeruleus (LC) and subcoeruleus area have axons which 
terminate in the spinal cord 1°,19'A5,2°,26. Terminals of  at least some of these neurons 
contain noradrenalinel,11, is. The presence of dense CA terminal concentrations in the 
apex of  the dorsal hornlZ, 19, alterations in dorsal horn interneuron responses to 
cutaneous stimulation following intravenous L-DOPA injection4,16 or iontophoretic 
application of noradrenaline (NA)la, 25, changes in pain response thresholds after des- 
tructive lesions of  LC 7, and the apparent interaction of stimulation-produced and nar- 
cotic analgesic activity with functioning catecholaminergic systems 2,8° all suggest that 
noradrenergic brain stem nuclei are able to alter sensory transmission at the dorsal 
horn level. 

In the experiments briefly described here, the functional effects of the LC projec- 
tion to the lumbar spinal dorsal horn were directly evaluated by determining the chan- 
ges in dorsal horn cell responses, to noxious and innocuous cutaneous stimulation, 
caused by electrical stimulation in the region of LC. Eleven cats anesthetized with 
alpha-chloralose (75 mg/kg) and paralyzed with gallamine triethiodide were used. 
Blood pressure, end-expiratory CO2 and core temperature were continuously monito- 
red and maintained within accepted limits 16. The lumbar enlargement of the spinal 
cord was surgically exposed and covered with warm saline. A suboccipital craniectomy 
was done and bipolar stimulation electrodes were placed in the area of caudal LC bila- 
terally. Target point coordinates used were: posterior 4.0, lateral 2.8, depth-2.86,22 . 
Extracellular recordings from 70 dorsal horn units were done with parylene-coated 
microelectrodes. Once isolated, the units' receptive fields and adequate stimuli were 
determined. Unit responses either to innocuous hair or skin displacement with a me- 
chanical stimulator or to heating the skin to noxious temperature levels 8 with a Peltier 
contact thermode were collected. A PDP-11/34 computer was used for data collection 
and analysis. The effect of stimulating the ipsilateral or contralateral LC was then de- 
termined. Stimulus trains were 250 msec to 10 sec in length. The stimuli were biphasic 
pulses lasting 200 Fsec with a frequency of 100-200 Hz and amplitude varying from 20 
to 400/~A. The locations of 20 of the dorsal horn recording sites were marked with 
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small  electrolytic lesions. Lesions were made  at  all b ra in  stem s t imula t ion  sites. A t  the 

end o f  each exper iment  the animal  was perfused with saline and 10 ~ buffered fo rma-  

lin. A p p r o p r i a t e  40 # m  frozen sections stained with cresyl violet  were examined micro-  

scopically to determine  the lesion sites. 

The p redominan t  effect o f  LC s t imula t ion  was to depress the responses o f  dorsa l  

horn  units located in l amina  4 or  5 to cu taneous  stimuli.  Sixteen cells which responded  

only to pinch and  noxious  thermal  skin s t imula t ion  were evaluated.  F o r  13 o f  these 16 

cells the effects o f  LC s t imula t ion  were inhibi tory .  The electrical threshold  for  these in- 

h ibi tory  effects was usual ly between 50 and 100 # A .  In all an imals  where the bra in  

stem electrodes were placed sat isfactori ly in LC, inhib i t ion  o f  the responses to noxious  

thermal  s t imulat ion could  be elicited by bo th  ipsi lateral  and  con t ra l a t e ra l  LC st imula-  

t ion (Fig.  1). Thi r ty- two cells tha t  responded  to only innocuous  stimuli ,  such as hair  

movement ,  were studied. LC s t imulat ion depressed the responses  o f  twenty- four  o f  

these cells to  innocuous  s t imulat ion,  increased the responses o f  three o f  the cells, and  

had  no effect on five o f  the cells. Similar  effects were elicited by both  ipsi la teral  and  

cont ra la tera l  s t imula t ion  (Fig.  2). Thir teen cells with graded  responses to innocuous  

and noxious  stimuli were studied. LC s t imula t ion  depressed the responses  to noxious  
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Fig. 1. The effects of locus coeruleus stimulation on responses of a lamina 5 neuron to a cutaneous 
temperature stimulus. A: the time course and magnitude of the depilated skin temperature change. B: 
the unit response to the stimulus. Each bin is 0.5 sec wide. C and D: the effects of ipsilateral and con- 
tralateral LC stimulation on the response of the unit to the same cutaneous temperature stimulus. The 
black bars in C and D indicate the time when the brain stem stimulus was being applied. E: the loca- 
tions of the brain stem electrodes. F: the location of the recording site. The time abscissa in A is the 
same as in B, C and D. 
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Fig. 2. The effects of locus coeruleus stimulation on the responses of a lamina 4 unit to an innocuous 
hair movement stimulus. A: the time course and magnitude of the stimulator probe displacement. B, 
C and D: peristimulus time histograms, each the sum of 20 consecutive trials, showing the average 
responses of this unit to the cutaneous stimulus. Trials were separated by 5 sec. The average evoked 
spikes were counted from time 0 to 750 msec after the displacement stimulus onset. C and D: the ef- 
fects of ipsilateral and contralateral LC stimulation, respectively, the time of which is indicated by the 
black bars. The double asterisks indicate a significant difference (P < 0.01) between the control and 
test paradigms using the two-tailed t-test. E: the locations of the brain stem stimulating electrodes. F: 
the location of the recording site in lamina 4. The time abscissae in A, B and C correspond to that of 
D. 

thermal stimulation in 9 o f  11 o f  these cells tested, had no effect on  2 cells, inhibited the 
responses o f  2 cells to innocuous cutaneous stimulation, and increased the response o f  

2 cells to innocuous cutaneous stimulation. The effects o f  stimulating ipsilateral and 
contralateral  L C  were always similar. Seven cells were found that  demonstra ted stri- 

king increases in activity during either ipsilateral or  contralateral  LC  stimulation (Fig. 
3). One o f  these spontaneously active cells was inhibited by noxious cutaneous stimu- 
lation, one was activated by noxious cutaneous heat, and 5 responded only to brisk tap 

o f  the hindlimb (Fig. 3). These cells were all located in dorsal horn  lamina 6. 
These results indicate that  the pr imary  effect o f  the coeruleospinal pa thway is in- 

hibitory on responses o f  lamina 4 and 5 cells, and that  deeper lamina 6 cells can be ac- 
tivated by LC stimulation. Studies using retrograde t ranspor t  of  horseradish peroxida- 
se f rom the cord to LC  have shown, but  have not  emphasized, bilateral 15,2s coeruleo- 

spinal projections;  our  data  suggest the existence o f  functionally similar projections 
to the lumbar  dorsal horn  f rom both  loci coerulei. Though  L C  stimulation presumably 
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releases noradrenaline (NA) 1 from coeruleospinal terminals, iontophoresis o f  

NA in the dorsal horn causes selective inhibition o f  interneuron responses to noxious 

stimuli and has little effect on the responses of  dorsal  horn cells to innocuous stimuli 5. 

Similarly, the effects o f  intravenous injections o f  the N A  precursor  L-DOPA on dorsal 

horn  responses 16 are not  mimicked by LC stimulation, even though  we have shown in 

4 cats pretreated with the amine depletor, reserpine, that  LC stimulation is dependent 
on intact monoamine  stores (unpublished observation). Our  results are similar to 

those o f  Sasa et al. 23,24, who have shown that  LC stimulation causes reserpine-sensi- 

tive inhibition o f  the responses o f  trigeminal interneurons to inferior alveolar nerve 
stimulation. The profound inhibition described here is consistent with the behavioral 

analgesia seen when the LC area is stimulated zT, and the apparent  partial dependence 
of  narcotic analgesia on functioning catecholaminergic systems 30. It remains unclear, 

however, why pain thresholds should increase when LC has been destroyed bilateral- 

ly 7, and why st imulation-produced analgesia should be antagonized by increased N A  

levels in the central nervous system 2. These conflicts may occur in par t  because there 

are other major  catecholamine nuclei projecting to the spinal cord u,]s  or  because we 

are looking at indirect effects o f  N A  release, since we are recording primarily f rom 

neurons in lamina 4 and 5 and the most  prominent  dorsal horn concentrat ion of  N A  is 
in the apical region10, ]2,2°. Furthermore,  LC stimulation or pharmacologic  alterations 
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Fig. 3. Activation of a lamina 6 cell by LC stimulation. A: the cutaneous temperature stimulus time 
course and magnitude. B: the control response to this stimulus. C and D • the effects of ipsilateral and 
contralateral LC stimulation, the times of which are indicated by the black bars. E: the brain stem 
stimulation sites. F: the recording site in lamina 6. The time abscissa in A is the same as in B, C and D. 



419 

of N A  availabil i ty may have even more indirect effects because of  extensive supraseg- 

menta l  connect ions  of LC and  other catecholaminergic nuclei zl. There is some 

suggestion that  the funct ion  of LC in sensory processing may be confounded  by the 

proximity of  the parabrachia l  nucleus 14. The role of  the LC cont ro l  of  sensory trans-  

mission in the funct ioning  an imal  is uncertain,  bu t  is a lmost  certainly more  broad  than  

jus t  an analgesic mechanism,  since LC receives inpu t  f rom visual, motor ,  somatosen-  

spry, and  non-specific b ra in  stem systems 9,17, LC neurons  project  to spinal cord, cere- 

bellum, hypotha lamus ,  and  cerebral cortex~l, 29, and  N A  systems apparent ly  play im- 

po r t an t  roles in  such global  central  nervous  system funct ions as learning, behavior,  

react ion to stress and sleep a. 

This work was supported in par t  by N I H  G r a n t  1 RO12761-01A1. 
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