Neuropathic Pain Modulates Hippocampus Mediated Emotional Behavior

A. A. Mutso1,2, J. Radulovic1,2, A. V. Apkarian1,2

1Dept of Physiology, 2Neuroscience Institute, 3Dept of Psychiatry, Northwestern Univ Med School, Chicago, IL

INTRODUCTION

• Chronic neuropathic pain in humans causes gross reorganization of the brain, leading to cognitive and emotional disturbances (Baliki et al., 2008).

• Among others, heightened anxiety, attentional and memory deficits accompany chronic pain (Kodama et al., 2007). The hippocampus is one of the key brain areas linking cognitive and emotional information into long-term memory.

• Context fear extinction, but not cue, is seen to be hippocampus-dependent.

• MAPK/Erk-CREB signaling cascade in the hippocampus is necessary for memory formation, and may modulate emotional responses. An increase in pErk is necessary for fear extinction.

• This study aims to determine how chronic neuropathic pain affects hippocampus-dependent behavior as well as determine underlying molecular properties accompanying these behaviors.

METHODS

• 42 C57/B6 9-week old male mice underwent either a Sham or spared-nerve injury surgery on the left hind paw (Sham=20, SNI=22). 21 mice underwent the same on the right hind paw (Sham=10, SNI=11).

• SNI animals included in the analysis had a significant decrease in withdrawal threshold on the injured paw (Von Frey thresholds). Sham animals showed no change.

• Subgroup of 21 mice (left paw) underwent context and cue fear extinction and conditioning. Brains of these mice were taken for immunohistochemistries for dpErk, cFos, and pCreb.

• Subgroup of 42 mice (21 left paw, 21 right paw) were observed for anxiety-like behaviors on the Novelty Suppressed Feeding, Black-box Emergence, and Elevated Plus Maze tasks.

• Of the anxiety tested mice, 20 brains were taken for immunohistochemistries (10 SNI) and 22 for Western blots (12 SNI), where deltaFosB and dpErk were investigated.

CONCLUSIONS

• SNI animals are impaired in contextual fear extinction, but not cue fear extinction, suggesting a hippocampus specific change.

• Upregulation of dpErk in SNI animals (non-fear conditioned) is seen only ipsilateral to injury. This laterality suggests a specific effect of chronic pain and not chronic stress.

• Upregulation of dpErk without fear extinction in SNI mice suggests an underlying change in hippocampal functioning. This upregulation may cause an inability of these mice to have a significant increase in dpErk during extinction when compared to baseline, leading to their behavioral deficit in context extinction.

• This upregulation may also be modulating emotional behavior, such as anxiety, as seen in the SNI mice.

• This is the first evidence for specific effects of chronic neuropathic pain on hippocampus mediated behavior and molecular properties.

Funded by NIH Grant NS57704 NIH Grant MH73669